248 research outputs found

    An optimized QoS scheme for IMS-NEMO in heterogeneous networks

    Get PDF
    The network mobility (NEMO) is proposed to support the mobility management when users move as a whole. In IP Multimedia Subsystem (IMS), the individual Quality of Service (QoS) control for NEMO results in excessive signaling cost. On the other hand, current QoS schemes have two drawbacks: unawareness of the heterogeneous wireless environment and inefficient utilization of the reserved bandwidth. To solve these problems, we present a novel heterogeneous bandwidth sharing (HBS) scheme for QoS provision under IMS-based NEMO (IMS-NEMO). The HBS scheme selects the most suitable access network for each session and enables the new coming non-real-time sessions to share bandwidth with the Variable Bit Rate (VBR) coded media flows. The modeling and simulation results demonstrate that the HBS can satisfy users' QoS requirement and obtain a more efficient use of the scarce wireless bandwidth

    Gr\"obner-Shirshov bases and linear bases for free multi-operated algebras over algebras with applications to differential Rota-Baxter algebras and integro-differential algebras

    Full text link
    Quite much recent studies has been attracted to the operated algebra since it unifies various notions such as the differential algebra and the Rota-Baxter algebra. An Ω\Omega-operated algebra is a an (associative) algebra equipped with a set Ω\Omega of linear operators which might satisfy certain operator identities such as the Leibniz rule. A free Ω\Omega-operated algebra BB can be generated on an algebra AA similar to a free algebra generated on a set. If AA has a Gr\"{o}bner-Shirshov basis GG and if the linear operators Ω\Omega satisfy a set Φ\Phi of operator identities, it is natural to ask when the union G∪ΦG\cup \Phi is a Gr\"{o}bner-Shirshov basis of BB. A previous work answers this question affirmatively under a mild condition, and thereby obtains a canonical linear basis of BB. In this paper, we answer this question in the general case of multiple linear operators. As applications we get operated Gr\"{o}bner-Shirshov bases for free differential Rota-Baxter algebras and free integro-differential algebras over algebras as well as their linear bases. One of the key technical difficulties is to introduce new monomial orders for the case of two operators, which might be of independent interest.Comment: 27 page

    Decomposed Guided Dynamic Filters for Efficient RGB-Guided Depth Completion

    Full text link
    RGB-guided depth completion aims at predicting dense depth maps from sparse depth measurements and corresponding RGB images, where how to effectively and efficiently exploit the multi-modal information is a key issue. Guided dynamic filters, which generate spatially-variant depth-wise separable convolutional filters from RGB features to guide depth features, have been proven to be effective in this task. However, the dynamically generated filters require massive model parameters, computational costs and memory footprints when the number of feature channels is large. In this paper, we propose to decompose the guided dynamic filters into a spatially-shared component multiplied by content-adaptive adaptors at each spatial location. Based on the proposed idea, we introduce two decomposition schemes A and B, which decompose the filters by splitting the filter structure and using spatial-wise attention, respectively. The decomposed filters not only maintain the favorable properties of guided dynamic filters as being content-dependent and spatially-variant, but also reduce model parameters and hardware costs, as the learned adaptors are decoupled with the number of feature channels. Extensive experimental results demonstrate that the methods using our schemes outperform state-of-the-art methods on the KITTI dataset, and rank 1st and 2nd on the KITTI benchmark at the time of submission. Meanwhile, they also achieve comparable performance on the NYUv2 dataset. In addition, our proposed methods are general and could be employed as plug-and-play feature fusion blocks in other multi-modal fusion tasks such as RGB-D salient object detection

    Recurrent Contour-based Instance Segmentation with Progressive Learning

    Full text link
    Contour-based instance segmentation has been actively studied, thanks to its flexibility and elegance in processing visual objects within complex backgrounds. In this work, we propose a novel deep network architecture, i.e., PolySnake, for contour-based instance segmentation. Motivated by the classic Snake algorithm, the proposed PolySnake achieves superior and robust segmentation performance with an iterative and progressive contour refinement strategy. Technically, PolySnake introduces a recurrent update operator to estimate the object contour iteratively. It maintains a single estimate of the contour that is progressively deformed toward the object boundary. At each iteration, PolySnake builds a semantic-rich representation for the current contour and feeds it to the recurrent operator for further contour adjustment. Through the iterative refinements, the contour finally progressively converges to a stable status that tightly encloses the object instance. Moreover, with a compact design of the recurrent architecture, we ensure the running efficiency under multiple iterations. Extensive experiments are conducted to validate the merits of our method, and the results demonstrate that the proposed PolySnake outperforms the existing contour-based instance segmentation methods on several prevalent instance segmentation benchmarks. The codes and models are available at https://github.com/fh2019ustc/PolySnake

    LRRU: Long-short Range Recurrent Updating Networks for Depth Completion

    Full text link
    Existing deep learning-based depth completion methods generally employ massive stacked layers to predict the dense depth map from sparse input data. Although such approaches greatly advance this task, their accompanied huge computational complexity hinders their practical applications. To accomplish depth completion more efficiently, we propose a novel lightweight deep network framework, the Long-short Range Recurrent Updating (LRRU) network. Without learning complex feature representations, LRRU first roughly fills the sparse input to obtain an initial dense depth map, and then iteratively updates it through learned spatially-variant kernels. Our iterative update process is content-adaptive and highly flexible, where the kernel weights are learned by jointly considering the guidance RGB images and the depth map to be updated, and large-to-small kernel scopes are dynamically adjusted to capture long-to-short range dependencies. Our initial depth map has coarse but complete scene depth information, which helps relieve the burden of directly regressing the dense depth from sparse ones, while our proposed method can effectively refine it to an accurate depth map with less learnable parameters and inference time. Experimental results demonstrate that our proposed LRRU variants achieve state-of-the-art performance across different parameter regimes. In particular, the LRRU-Base model outperforms competing approaches on the NYUv2 dataset, and ranks 1st on the KITTI depth completion benchmark at the time of submission. Project page: https://npucvr.github.io/LRRU/.Comment: Published in ICCV 202

    A linear chained approach for service invocation in IP multimedia subsystem.

    Get PDF
    IP Multimedia Subsystem (IMS) is considered to provide multimedia services to users through an IP-based control plane. The current IMS service invocation mechanism, however, requires the Serving-Call Session Control Function (S-CSCF) invokes each Application Server (AS) sequentially to perform service subscription pro?le, which results in the heavy load of the S-CSCF and the long session set-up delay. To solve this issue, this paper proposes a linear chained service invocation mechanism to invoke each AS consecutively. By checking all the initial Filter Criteria (iFC) one-time and adding the addresses of all involved ASs to the ?Route? header, this new approach enables multiple services to be invoked as a linear chain during a session. We model the service invocation mechanisms through Jackson networks, which are validated through simulations. The analytic results verify that the linear chained service invocation mechanism can effectively reduce session set-up delay of the service layer and decrease the load level of the S-CSC
    • …
    corecore